Surrogate-based optimization with adaptive parallel infill strategy enhanced by inaccurate multi-objective search

نویسندگان

چکیده

In recent decades, surrogate-based optimization (SBO) has been developed to replace costly models with cheap surrogates improve efficiency. this article, an adaptive parallel infill strategy is proposed balance exploration and exploitation over the design space during process of SBO. Within method, inaccurate search adopted optimize surrogate models, thereby helping locate point. An elite archive exploited store superior sampling points for batch sampling, while a customized size determination introduced. The SBO method its tested on six unconstrained five constrained analytical cases results compared state-of-the-art algorithms. 582-bar tower truss system also performed utilized verify method. shows excellent performance better stability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Surrogate-Assisted Strategy for Multi-Objective Optimization

1. Abstract A sequential metamodel-based optimization method is proposed for multi-objective optimization problems. The algorithm, designated as Pareto Domain Reduction, is an adaptive sampling method and an extension of the classical Domain Reduction approach (also known as the Sequential Response Surface Method). In addition to standard benchmark examples, a Multidisciplinary Design Optimizat...

متن کامل

MOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm

In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...

متن کامل

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Optimization

سال: 2021

ISSN: ['1029-0273', '0305-215X', '1026-745X']

DOI: https://doi.org/10.1080/0305215x.2021.1928109